編輯:關於Android編程
Android應用開發中離不開Handler,而Handler實際上最終是將Message交給MessageQueue。MessageQueue是Android消息機制的核心,熟悉MessageQueue能夠幫助我們更清楚詳細地理解Android的消息機制。這篇文章會介紹MessageQueue消息的插入(enqueueMessage)和讀取(next),native層的消息機制,以及IdleHandler和SyncBarrier的邏輯原理。源碼是基於6.0。
每次使用Handler發送一個Message的時候,最終會先調用MessageQueue的enqueueMessage方法將Message方法放入到MessageQueue裡面。先看Handler的sendMessage方法,其他發送Message的內容也是一樣的:
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0); // 調用下面這個方法
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); // 調用下面方法
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue; //Handler中的mQueue
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis); // 下面方法
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis); //調用MessageQueue的enqueueMessage
}
最後會調用Handler的mQueue的enqueueMessage方法,而Handler的mQueue是從哪裡來的呢?在Handler的構造函數中設置的,看默認的情況:
public Handler() {
this(null, false);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
無參Handler構造函數對應的是當前調用無參Handler構造函數線程的Looper,Looper是一個ThreadLocal變量,也就是說但是每個線程獨有的,每個線程調用了Looper.prepare方法後,就會給當前線程設置一個Looper:
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
Looper裡面包含了一個MessageQueue, 在Handler的構造函數中,會將當前關聯的Looper的MessageQueue賦值給Handler的成員變量mQueue,enqueueMessage的時候就是調用該mQueue的enqueueMessage。關於Handler與Looper可以理解為每個Handler會關聯一個Looper,每個線程最多只有一個Looper。Looper創建的時候會創建一個MessageQueue,而發送消息的時候,Handler就會通過調用mQueue.enqueueMessage方法將Message放入它關聯的Looper的MessageQueue裡面。介紹了Handler與Looper,然後繼續看看MessageQueue的enqueueMessage方法:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
整個enqueueMessage方法的過程就是先持有MessageQueue.this鎖,然後將Message放入隊列中,放入隊列的過程是:
1. 如果隊列為空,或者當前處理的時間點為0(when的數值,when表示Message將要執行的時間點),或者當前Message需要處理的時間點先於隊列中的首節點,那麼就將Message放入隊列首部,否則進行第2步。
2. 遍歷隊列中Message,找到when比當前Message的when大的Message,將Message插入到該Message之前,如果沒找到則將Message插入到隊列最後。
3. 判斷是否需要喚醒,一般是當前隊列為空的情況下,next那邊會進入睡眠,需要enqueue這邊喚醒next函數。後面會詳細介紹
執行完後,會釋放持有的MessageQueue.this的鎖。這樣整個enqueueMessage方法算是完了,然後看看讀取Message的MessageQueue的next方法。
MessageQueue的next方法是從哪裡調用的呢?先看一個線程對Looper的標准用法是:
class LoopThread extends Thread{
public Handler mHandler;
public void run(){
Looper.prepare();
mHandler = new Handler() {
public void handleMessage(Message msg) {
// process incoming messages here
}
};
Looper.loop();
}
}
prepare方法我們前面已經看過了,就是初始化ThreadLocal變量Looper。loop()方法就是循環讀取MessageQueue中Message,然後處理每一個Message。我們看看Looper.loop方法源碼:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block 此處就是next方法調用的地方
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
整個loop函數大概的過程就是先調用MessageQueue.next方法獲取一個Message,然後調用Message的target的dispatchMessage方法來處理Message,Message的target就是發送這個Message的Handler。處理的過程是先看Message的callback有沒有實現,如果有,則使用調用callback的run方法,如果沒有則看Handler的callback是否為空,如果非空,則使用handler的callback的handleMessage方法來處理Message,如果為空,則調用Handler的handleMessage方法處理。
我們主要看next,從注釋來看,next方法可能會阻塞,先看next方法的源碼:
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr; //mPrt是native層的MessageQueue的指針
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis); // jni函數
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) { //target 正常情況下都不會為null,在postBarrier會出現target為null的Message
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1; // 等待時間無限長
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) { //運行idle
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
整個next函數的主要是執行步驟是:
step1: 初始化操作,如果mPtr為null,則直接返回null,設置nextPollTimeoutMillis為0,進入下一步。 step2: 調用nativePollOnce, nativePollOnce有兩個參數,第一個為mPtr表示native層MessageQueue的指針,nextPollTimeoutMillis表示超時返回時間,調用這個nativePollOnce會等待wake,如果超過nextPollTimeoutMillis時間,則不管有沒有被喚醒都會返回。-1表示一直等待,0表示立刻返回。下一小節單獨介紹這個函數。 step3: 獲取隊列的頭Message(msg),如果頭Message的target為null,則查找一個異步Message來進行下一步處理。當隊列中添加了同步Barrier的時候target會為null。 step4: 判斷上一步獲取的msg是否為null,為null說明當前隊列中沒有msg,設置等待時間nextPollTimeoutMillis為-1。實際上是等待enqueueMessage的nativeWake來喚醒,執行step4。如果非null,則下一步 step5: 判斷msg的執行時間(when)是否比當前時間(now)的大,如果小,則將msg從隊列中移除,並且返回msg,結束。如果大則設置等待時間nextPollTimeoutMillis為(int) Math.min(msg.when - now, Integer.MAX_VALUE),執行時間與當前時間的差與MAX_VALUE的較小值。執行下一步 step6: 判斷是否MessageQueue是否已經取消,如果取消的話則返回null,否則下一步 step7: 運行idle Handle,idle表示當前有空閒時間的時候執行,而運行到這一步的時候,表示消息隊列處理已經是出於空閒時間了(隊列中沒有Message,或者頭部Message的執行時間(when)在當前時間之後)。如果沒有idle,則繼續step2,如果有則執行idleHandler的queueIdle方法,我們可以自己添加IdleHandler到MessageQueue裡面(addIdleHandler方法),執行完後,回到step2。需要說的時候,我們平常只是使用Message,但是實際上IdleHandler如果使用的好,應該會達到意想不到的效果,它表示MessageQueue有空閒時間的時候執行一下。然後介紹一下nativePollOnce與nativeWake方法
nativePollOnce與nativeWake是兩個jni方法,這兩個方法jni實現方法在frameworks/base/core/jni/android_os_MessageQueue.cpp。這個是MessageQueue的native層內容。native層的NativeMessageQueue初始化是在nativeInit方法:
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
if (!nativeMessageQueue) {
jniThrowRuntimeException(env, "Unable to allocate native queue");
return 0;
}
nativeMessageQueue->incStrong(env);
return reinterpret_cast(nativeMessageQueue);
}
對應的java層方法是nativeInit,在MessageQueue構造函數的時候調用:
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
而NativeMessageQueue的構造函數是:
NativeMessageQueue::NativeMessageQueue() :
mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
mLooper = Looper::getForThread();
if (mLooper == NULL) {
mLooper = new Looper(false);
Looper::setForThread(mLooper);
}
}
創建了一個native層的Looper。Looper的源碼在system/core/libutils/Looper.cpp。Looper通過epoll_create創建了一個mEpollFd作為epoll的fd,並且創建了一個mWakeEventFd,用來監聽java層的wake,同時可以通過Looper的addFd方法來添加新的fd監聽。
nativePollOnce是每次調用next方法獲取消息的時候調用的:
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
jlong ptr, jint timeoutMillis) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast(ptr);
nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
mPollEnv = env;
mPollObj = pollObj;
mLooper->pollOnce(timeoutMillis);
mPollObj = NULL;
mPollEnv = NULL;
if (mExceptionObj) {
env->Throw(mExceptionObj);
env->DeleteLocalRef(mExceptionObj);
mExceptionObj = NULL;
}
}
這個方法的native層方法最終會調用Looper的pollOnce:
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {
while (mResponseIndex < mResponses.size()) {
const Response& response = mResponses.itemAt(mResponseIndex++);
int ident = response.request.ident;
if (ident >= 0) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
"fd=%d, events=0x%x, data=%p",
this, ident, fd, events, data);
#endif
if (outFd != NULL) *outFd = fd;
if (outEvents != NULL) *outEvents = events;
if (outData != NULL) *outData = data;
return ident;
}
}
if (result != 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
if (outFd != NULL) *outFd = 0;
if (outEvents != NULL) *outEvents = 0;
if (outData != NULL) *outData = NULL;
return result;
}
result = pollInner(timeoutMillis);
}
}
int Looper::pollInner(int timeoutMillis) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);
#endif
// Adjust the timeout based on when the next message is due.
if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
if (messageTimeoutMillis >= 0
&& (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
timeoutMillis = messageTimeoutMillis;
}
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - next message in %" PRId64 "ns, adjusted timeout: timeoutMillis=%d",
this, mNextMessageUptime - now, timeoutMillis);
#endif
}
// Poll.
int result = POLL_WAKE;
mResponses.clear();
mResponseIndex = 0;
// We are about to idle.
mPolling = true;
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// No longer idling.
mPolling = false;
// Acquire lock.
mLock.lock();
// Rebuild epoll set if needed.
if (mEpollRebuildRequired) {
mEpollRebuildRequired = false;
rebuildEpollLocked();
goto Done;
}
// Check for poll error.
if (eventCount < 0) {
if (errno == EINTR) {
goto Done;
}
ALOGW("Poll failed with an unexpected error, errno=%d", errno);
result = POLL_ERROR;
goto Done;
}
// Check for poll timeout.
if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - timeout", this);
#endif
result = POLL_TIMEOUT;
goto Done;
}
// Handle all events.
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeEventFd) {
if (epollEvents & EPOLLIN) {
awoken();
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
}
} else {
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex >= 0) {
int events = 0;
if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
pushResponse(events, mRequests.valueAt(requestIndex));
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
"no longer registered.", epollEvents, fd);
}
}
}
Done: ;
// Invoke pending message callbacks.
mNextMessageUptime = LLONG_MAX;
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
if (messageEnvelope.uptime <= now) {
// Remove the envelope from the list.
// We keep a strong reference to the handler until the call to handleMessage
// finishes. Then we drop it so that the handler can be deleted *before*
// we reacquire our lock.
{ // obtain handler
sp handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock();
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
this, handler.get(), message.what);
#endif
handler->handleMessage(message);
} // release handler
mLock.lock();
mSendingMessage = false;
result = POLL_CALLBACK;
} else {
// The last message left at the head of the queue determines the next wakeup time.
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
// Release lock.
mLock.unlock();
// Invoke all response callbacks.
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
this, response.request.callback.get(), fd, events, data);
#endif
// Invoke the callback. Note that the file descriptor may be closed by
// the callback (and potentially even reused) before the function returns so
// we need to be a little careful when removing the file descriptor afterwards.
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
removeFd(fd, response.request.seq);
}
// Clear the callback reference in the response structure promptly because we
// will not clear the response vector itself until the next poll.
response.request.callback.clear();
result = POLL_CALLBACK;
}
}
return result;
}
這個方法超長,但實際上Looper的pollOnce方法主要有5步:
調用epoll_wait方法等待所監聽的fd的寫入,其方法原型如下:int epoll_wait(int epfd, struct epoll_event * events, intmaxevents, int timeout)
調用的方法參數為:
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
eventItems裡面就包含了mWakeEvent和通過addFd添加fd時加入的Event。該方法會阻塞,當timeoutMillis(對應java層的nextPollTimeoutMillis)到了時間,該方法會返回,或者eventItems有事件來了,該方法會返回。返回之後就是干下一件事
2. 判斷有沒有event,因為可能是timeoutMillis到了返回的,如果沒有直接進行4.
3. 讀取eventItems的內容,如果eventItem的fd是mWakeEventFd,則調用awoken方法,讀取Looper.wake寫入的內容,如果是其他的fd,則使用pushResponse來讀取,並且將內容放入Response當中。
4. 處理NativeMessageQueue的消息,這些消息是native層的消息
5. 處理pushResponse寫入的內容。
裡面主要是干了三件事處理wakeEventFd的輸入內容,其他fd的輸入內容,以及NativeMessageQueue裡面的Message。
實際上最後就是調用了Looper的wake方法:
//android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast(ptr);
nativeMessageQueue->wake();
}
void NativeMessageQueue::wake() {
mLooper->wake();
}
//Looper.cpp
void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ wake", this);
#endif
uint64_t inc = 1;
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
if (nWrite != sizeof(uint64_t)) {
if (errno != EAGAIN) {
ALOGW("Could not write wake signal, errno=%d", errno);
}
}
}
這樣native層的消息隊列就算是完了。
我們在next方法裡面看到有這麼一段代碼
if (msg != null && msg.target == null) { //target 正常情況下都不會為null,在postBarrier會出現target為null的Message
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
什麼時候msg.target會為null呢?有sync barrier消息的時候,實際上msg.target為null表示sync barrier(同步消息屏障)。MessageQueue有一個postSyncBarrier方法:
public int postSyncBarrier() {
return postSyncBarrier(SystemClock.uptimeMillis());
}
private int postSyncBarrier(long when) {
// Enqueue a new sync barrier token.
// We don't need to wake the queue because the purpose of a barrier is to stall it.
synchronized (this) {
final int token = mNextBarrierToken++;
final Message msg = Message.obtain();
msg.markInUse();
msg.when = when;
msg.arg1 = token;
Message prev = null;
Message p = mMessages;
if (when != 0) {
while (p != null && p.when <= when) {
prev = p;
p = p.next;
}
}
if (prev != null) { // invariant: p == prev.next
msg.next = p;
prev.next = msg;
} else {
msg.next = p;
mMessages = msg;
}
return token;
}
}
對應有removeSyncBarrier方法:
public void removeSyncBarrier(int token) {
// Remove a sync barrier token from the queue.
// If the queue is no longer stalled by a barrier then wake it.
synchronized (this) {
Message prev = null;
Message p = mMessages;
while (p != null && (p.target != null || p.arg1 != token)) {
prev = p;
p = p.next;
}
if (p == null) {
throw new IllegalStateException("The specified message queue synchronization "
+ " barrier token has not been posted or has already been removed.");
}
final boolean needWake;
if (prev != null) {
prev.next = p.next;
needWake = false;
} else {
mMessages = p.next;
needWake = mMessages == null || mMessages.target != null;
}
p.recycleUnchecked();
// If the loop is quitting then it is already awake.
// We can assume mPtr != 0 when mQuitting is false.
if (needWake && !mQuitting) {
nativeWake(mPtr); // 需要喚醒,因為隊首元素是SyncBarrier,隊列中有消息但是沒有異步消息的時候,next方法同樣會阻塞等待。
}
}
}
看next方法的源碼,每次消息隊列中有barrier的時候,next會尋找隊列中的異步消息來處理。如果沒有異步消息,設置nextPollTimeoutMillis = -1,進入阻塞等待新消息的到來。異步消息主要是系統發送的,而系統中的異步消息主要有觸摸事件,按鍵事件的消息。系統中調用postSyncBarrier和removeSyncBarrier主要實在ViewRootImpl的scheduleTraversals和unscheduleTraversals,以及doTraversals方法中。從源碼可以猜到每次調用postSyncBarrier後都會調用removeSyncBarrier,不然同步消息就沒法執行了(看next源碼理解這一點)。可以看一下scheduleTraversal方法:
//ViewRootImpl.java
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
if (!mUnbufferedInputDispatch) {
scheduleConsumeBatchedInput();
}
notifyRendererOfFramePending();
pokeDrawLockIfNeeded();
}
}
實際上MessageQueue的源碼一直在變化的,2.3才加入了native層的Message,在4.0.1還沒有SyncBarrier,4.1才開始加入SyncBarrier的,而且MessageQueue沒有postSyncBarrier方法,只有enqueueSyncBarrier方法,Looper裡面有個postSyncBarrier方法。
前面介紹了一下每個版本的特點,我想介紹一種SyncBarrier的意義,我們介紹了使用SyncBarrier主要是ViewRootImpl中的scheduleTraversal的時候,那是跟UI事件相關的,像派發消息會通過發送Message發到主線程:
public void dispatchInputEvent(InputEvent event, InputEventReceiver receiver) {
SomeArgs args = SomeArgs.obtain();
args.arg1 = event;
args.arg2 = receiver;
Message msg = mHandler.obtainMessage(MSG_DISPATCH_INPUT_EVENT, args);
msg.setAsynchronous(true);
mHandler.sendMessage(msg);
}
注意它這裡就是使用的異步Message,使用了msg.setAsyncronous(true)。 而SyncBarrier有什麼用處呢?我們剛剛介紹的時候,當消息隊列的第一個Message的target的時候,表示它是一個SyncBarrier,它會阻攔同步消息,而選擇隊列中第一個異步消息處理,如果沒有則會阻塞。這表示什麼呢?這是表示第一個Message是SyncBarrier的時候,會只處理異步消息。而我們前面介紹了InputEvent的時候,它就是異步消息,在有SyncBarrier的時候就會被優先處理。所以在調用了scheduleTraversal的時候,就會只處理觸摸事件這些消息了,保證用戶體驗。保證了觸摸事件及時處理,實際上這也能減少ANR。如果這個時候MessageQueue中有很多Message,也能夠及時處理那些觸摸事件的Message了。
總結MessageQueue是Android消息消息機制的內部核心,理解好MessageQueue更能理解好Android應用層的消息邏輯。另外MessageQueue的代碼一直在不斷地變化,對照不同版本的代碼,真的能領略代碼改變時的目的,從演變中學習。
【android】仿360手機衛士的簡易設計思路及源碼
筆者最近一直忙於滿廣州的跑,實習好難找好難找,博客也是有點久沒去更新。仿360手機衛士的實現的目的更多的是出於對常用知識點的一個鞏固吧,比較適合像我這種接觸沒多久的學習者
Android 簡易手勢密碼開源庫詳解
簡介本文介紹一個Android手勢密碼開源庫的使用及實現的詳細過程,該開源庫主要實現以下幾個功能: 支持手勢密碼的繪制,並支持密碼保存功能,解鎖時自動比對密碼給出結果
AndroidStudio的debug功能詳解
運行debug模式 1. 進入debug- 點擊圖中紅色圓圈圈起的左邊綠色按鈕,運行app的debug模式,快捷鍵Shift+F9- 點擊圖中紅色圓圈圈起的右邊按鈕,可以
Android通過json向MySQL中讀寫數據的方法詳解【寫入篇】
本文實例講述了Android通過json向MySQL中寫入數據的方法。分享給大家供大家參考,具體如下:先說一下如何通過json將Android程序中的數據上傳到MySQL