編輯:關於Android編程
本文參考《Android系統源代碼情景分析》,作者羅升陽
一、測試代碼:
~/Android/external/binder/server
----FregServer.cpp
~/Android/external/binder/common
----IFregService.cpp
----IFregService.h
~/Android/external/binder/client
----FregClient.cpp
Binder庫(libbinder)代碼:
~/Android/frameworks/base/libs/binder
----BpBinder.cpp
----Parcel.cpp
----ProcessState.cpp
----Binder.cpp
----IInterface.cpp
----IPCThreadState.cpp
----IServiceManager.cpp
----Static.cpp
~/Android/frameworks/base/include/binder
----Binder.h
----BpBinder.h
----IInterface.h
----IPCThreadState.h
----IServiceManager.h
----IBinder.h
----Parcel.h
----ProcessState.h
驅動層代碼:
~/Android//kernel/goldfish/drivers/staging/android
----binder.c
----binder.h
~/Android//kernel/goldfish/drivers/staging/android
----binder.c
static int
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,
void __user *buffer, int size, signed long *consumed, int non_block)
{
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
int ret = 0;
.........
while (1) {
uint32_t cmd;
struct binder_transaction_data tr;
struct binder_work *w;
struct binder_transaction *t = NULL;
if (!list_empty(&thread->todo))
w = list_first_entry(&thread->todo, struct binder_work, entry);
else if (!list_empty(&proc->todo) && wait_for_proc_work)
w = list_first_entry(&proc->todo, struct binder_work, entry);//將要處理的工作項保存在binder_work結構體w中
else {
if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */
goto retry;
break;
}
........
switch (w->type) {
case BINDER_WORK_TRANSACTION: {
t = container_of(w, struct binder_transaction, work);//由於binder_work結構體w的類型為BINDER_WORK_TRANSACTION,即它是一個嵌入在一個binder_transaction結構體中的工作項,因此可以安全地將它轉換為一個binder_transaction結構體t
} break;
.........
}
if (!t)
continue;
BUG_ON(t->buffer == NULL);
if (t->buffer->target_node) {
struct binder_node *target_node = t->buffer->target_node;
tr.target.ptr = target_node->ptr;//Binder實體對象ptr為NULL
tr.cookie = target_node->cookie;//Binder實體對象cookie為NULL
t->saved_priority = task_nice(current);
if (t->priority < target_node->min_priority &&
!(t->flags & TF_ONE_WAY))
binder_set_nice(t->priority);
else if (!(t->flags & TF_ONE_WAY) ||
t->saved_priority > target_node->min_priority)
binder_set_nice(target_node->min_priority);
cmd = BR_TRANSACTION;//cmd設置BR_TRANSACTION
} else {
.....
}
tr.code = t->code;//ADD_SERVICE_TRANCATION
tr.flags = t->flags;//TF_ACCEPTS_FDS
tr.sender_euid = t->sender_euid;
if (t->from) {
struct task_struct *sender = t->from->proc->tsk;
tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);
} else {
.......
}
tr.data_size = t->buffer->data_size;//數據緩沖區大小
tr.offsets_size = t->buffer->offsets_size;//偏移數組大小
tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;//內核緩沖區的內核空間地址和用戶空間地址相差一個固定值,並且保存在它的成員變量user_buffer_offset中
tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));//偏移保存在數據緩沖區的後面
if (put_user(cmd, (uint32_t __user *)ptr))//將命令返回
return -EFAULT;
ptr += sizeof(uint32_t);
if (copy_to_user(ptr, &tr, sizeof(tr)))//將binder_transaction_data結構體tr返回
return -EFAULT;
ptr += sizeof(tr);
.......
list_del(&t->work.entry);//刪除該任務項
t->buffer->allow_user_free = 1;//允許釋放
if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
t->to_parent = thread->transaction_stack;
t->to_thread = thread;
thread->transaction_stack = t;
} else {
t->buffer->transaction = NULL;
kfree(t);
........
}
break;
}
done:
*consumed = ptr - buffer;//cmd和binder_transaction_data結構體tr大小之和
........
return 0;
} if語句首先檢查線程thread自己的todo隊列中是否有個工作項需要處理。如果沒有,第19行的if語句再檢查它所屬進程proc的todo隊列中是否有工作項需要處理。只要其中的一個todo隊列中有工作項需要處理,函數binder_thread_read就將它取出來處理,並且保存在binder_work結構體w中。
由於binder_work結構體w的類型為BINDER_WORK_TRANSACTION,即它是一個嵌入在一個binder_transaction結構體中的工作項,因此可以安全地將它轉換為一個binder_transaction結構體t。
利用binder_transaction結構體t設置binder_transaction_data結構體tr各參數。並將cmd和binder_transaction_data結構體tr返回到binder_ioctl,然後再返回到binder_loop:
~/Android/frameworks/base/cmd/servicemanager
----binder.c
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
unsigned readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;//首先將BC_ENTER_LOOPER協議寫入緩沖區readbuf中
binder_write(bs, readbuf, sizeof(unsigned));//調用binder_write將它發送到Binder驅動程序中
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);//bwr.write_size為0,bwr.read_size不為0
if (res < 0) {
LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);//此時readbuf為cmd和binder_transaction_data結構體tr,bwr.read_consumed為cmd和binder_transaction_data結構體tr大小之和
if (res == 0) {
LOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
LOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
} 開始執行binder_parse。實現如下:
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uint32_t *ptr, uint32_t size, binder_handler func)
{
int r = 1;
uint32_t *end = ptr + (size / 4);
while (ptr < end) {
uint32_t cmd = *ptr++;
.......
switch(cmd) {//cmd為BR_TRANSACTION
......
case BR_TRANSACTION: {
struct binder_txn *txn = (void *) ptr;//binder_transaction_data結構體tr取出放到binder_txt結構體中
........
if (func) {//svcmgr_handler函數指針
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
res = func(bs, txn, &msg, &reply);//svcmgr_handler函數指針
binder_send_reply(bs, &reply, txn->data, res);
}
ptr += sizeof(*txn) / sizeof(uint32_t);
break;
}
......
}
return r;
}
在介紹binder_parse前,首先看幾個結構體。
~/Android/frameworks/base/cmd/servicemanager
----binder.h
struct binder_object
{
uint32_t type;
uint32_t flags;
void *pointer;
void *cookie;
};
struct binder_txn
{
void *target;
void *cookie;
uint32_t code;
uint32_t flags;
uint32_t sender_pid;
uint32_t sender_euid;
uint32_t data_size;
uint32_t offs_size;
void *data;
void *offs;
};
struct binder_io //具體含義見英文注釋
{
char *data; /* pointer to read/write from */
uint32_t *offs; /* array of offsets */
uint32_t data_avail; /* bytes available in data buffer */
uint32_t offs_avail; /* entries available in offsets array */
char *data0; /* start of data buffer */
uint32_t *offs0; /* start of offsets buffer */
uint32_t flags;
uint32_t unused;
};
結構體binder_txn用來描述進程間通信數據,它等同於前面介紹的binder_transaction_data結構體。void bio_init(struct binder_io *bio, void *data,
uint32_t maxdata, uint32_t maxoffs)
{
uint32_t n = maxoffs * sizeof(uint32_t);//偏移數組所占的大小
if (n > maxdata) {//偏移數組所占的大小不能大於最大能分配大小
bio->flags = BIO_F_OVERFLOW;
bio->data_avail = 0;
bio->offs_avail = 0;
return;
}
bio->data = bio->data0 = data + n;//偏移數組後面是數據緩沖區
bio->offs = bio->offs0 = data;//開始是偏移數組
bio->data_avail = maxdata - n;//數據緩沖區大小
bio->offs_avail = maxoffs;//偏移數組大小
bio->flags = 0;
} bio_init初始化了binder_io結構體reply。返回binder_parse執行bio_init_from_txn函數,實現如下:
~/Android/frameworks/base/cmd/servicemanager
----binder.c
void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn)
{
bio->data = bio->data0 = txn->data;
bio->offs = bio->offs0 = txn->offs;
bio->data_avail = txn->data_size;
bio->offs_avail = txn->offs_size / 4;
bio->flags = BIO_F_SHARED;
} bio_init_from_txn初始化了binder_io結構體msg。
返回binder_parse執行svcmgr_handler函數,實現如下:
~/Android/frameworks/base/cmd/servicemanager
----service_manager.c
int svcmgr_handler(struct binder_state *bs,
struct binder_txn *txn,
struct binder_io *msg,
struct binder_io *reply)
{
struct svcinfo *si;
uint16_t *s;
unsigned len;
void *ptr;
uint32_t strict_policy;
......
if (txn->target != svcmgr_handle)//txn->target為NULL,svcmgr_handle為NULL(void* (0))
return -1;
// Equivalent to Parcel::enforceInterface(), reading the RPC
// header with the strict mode policy mask and the interface name.
// Note that we ignore the strict_policy and don't propagate it
// further (since we do no outbound RPCs anyway).
strict_policy = bio_get_uint32(msg);//strict_policy為STRICT_MODE_PENALTY_GATHER
s = bio_get_string16(msg, &len);//s為android.os.IServiceManager
if ((len != (sizeof(svcmgr_id) / 2)) ||
memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {//比較是否一致,如果不一致,直接返回出錯
fprintf(stderr,"invalid id %s\n", str8(s));
return -1;
}
switch(txn->code) {//ADD_SERVICE_TRANSACTION,即SVC_MGR_ADD_SERVICE
........
case SVC_MGR_ADD_SERVICE:
s = bio_get_string16(msg, &len);//s為shy.luo.FregService,len為它的長度
ptr = bio_get_ref(msg);//返回Binder引用對象的句柄值
if (do_add_service(bs, s, len, ptr, txn->sender_euid))
return -1;
break;
.......
bio_put_uint32(reply, 0);
return 0;
}
其中svcmgr_id[]實現如下:
~/Android/frameworks/base/cmd/servicemanager
----service_manager.c
uint16_t svcmgr_id[] = {
'a','n','d','r','o','i','d','.','o','s','.',
'I','S','e','r','v','i','c','e','M','a','n','a','g','e','r'
}; 程序從binder_io結構體msg從獲取了3個字符串信息,然後調用bio_get_ref函數返回Binder引用對象的句柄值,實現如下:
~/Android/frameworks/base/cmd/servicemanager
----binder.c
void *bio_get_ref(struct binder_io *bio)
{
struct binder_object *obj;
obj = _bio_get_obj(bio);
if (!obj)
return 0;
if (obj->type == BINDER_TYPE_HANDLE)
return obj->pointer;
return 0;
} _bio_get_obj實現如下:
~/Android/frameworks/base/cmd/servicemanager
----binder.c
static struct binder_object *_bio_get_obj(struct binder_io *bio)
{
unsigned n;
unsigned off = bio->data - bio->data0;//flat_binder_object偏移,由於前面獲取字符串移動了data
/* TODO: be smarter about this? */
for (n = 0; n < bio->offs_avail; n++) {//offs_avail等於1
if (bio->offs[n] == off)
return bio_get(bio, sizeof(struct binder_object));
}
bio->data_avail = 0;
bio->flags |= BIO_F_OVERFLOW;
return 0;
} _bio_get_obj首先計算出flat_binder_object偏移,然後看看偏移是否和bio->offs[0]一致,如果一致,那麼就調用bio_get函數,實現如下。
~/Android/frameworks/base/cmd/servicemanager
----binder.c
static void *bio_get(struct binder_io *bio, uint32_t size)
{
size = (size + 3) & (~3);
if (bio->data_avail < size){
.......
} else {
void *ptr = bio->data;
bio->data += size;//數據指針增加
bio->data_avail -= size;//可用空間減少
return ptr;//返回了flat_binder_object結構體
}
} 函數返回了flat_binder_object結構體,最後返回到bio_get_ref函數,轉換成binder_object結構體指針。由於type等於BINDER_TYPE_HANDLE,所以返回Binder引用對象的句柄值。
Android實現下拉菜單Spinner效果
Android 中下拉菜單,即如html中的<select>,關鍵在於調用setDropDownViewResource方法,以XML的方式定義下拉菜單要顯示
Android Touch事件分發機制學習
Android中的事件分為按鍵事件和觸摸事件。Touch事件是由一個ACTION_DOWN,n個ACTION_MOVE,一個ACTION_UP組成onClick,onLo
Android App中實現相冊瀑布流展示的實例分享
傳統界面的布局方式總是行列分明、坐落有序的,這種布局已是司空見慣,在不知不覺中大家都已經對它產生了審美疲勞。這個時候瀑布流布局的出現,就給人帶來了耳目一新的感覺,這種布局
Android中自定義View和自定義動畫
Android FrameWork 層給我們提供了很多界面組件,但是在實際的商業開發中這些組件往往並不能完全滿足我們的需求,這時候我們就需要自定義我們自己的視圖和動畫。